Reg.No. | Re\|l|l|l|l|l|l| |
| :--- |

V Semester B.Sc. (CBCS) Degree Examination, March/April-2022
 PHYSICS

Statistical Physics, Quantum mechanics - I
Afmospheric Physics \& Nano Materials
(CBCS Scheme Freshers and Repeaters 2018-19 \& Onwards)
Paper: V
Time: $\mathbf{3}$ Hours
Maximum Marks : 70

Instructions to Candidates:

1. Answer any Five questions from each part.
2. Use Non - programmable scientific calculators are permitted.

PART - A

Answer any five questions. Each question carries Eight marks. $\quad(\mathbf{5} \times 8=\mathbf{4 0})$

1. a. What are fermions and bosons?
b. Derive an expression for the distribution function of particles obeying Fermi - Dirac statistics.
2. a. What is Phase Space?
b. Distinguish between Maxwell - Boltzmann statistics, Bose - Einstein statistics and Fermi - Dirac statistics.
3. Discuss briefly the failure of classical mechanics to explain :
a. Atomic spectra.
b. Black Body radiation.
4. a. What are matter waves? Mention any two of its characteristics.
b. Deduce an expression for the de-Broglie wavelength and express it in terms of energy and temperature.
5. a. State and explain Heisenberg's uncertainty principle.
b. Describe gamma - ray microscope experiment to illustrate the uncertainty principle.
6. a. What is meant by Hydrostatic balance?
b. Derive Beer's law for the absorption of solar radiation by the earth's atmosphere.
7. a. What are fixed gases and variable gases of the earth's atmosphere?
b. Derive an expression for variation of atmospheric pressure with altitude and give its graphical representation.
8. a. Mention the methods of synthesis of nano-materials.
b. What are zero, one and two dimensional nano systems? Give one example each. $(2+6)$

PART-B

Answer any five questions. Each question carries four marks.
9. A system contains 2 particles A \& B and there are three quantum states or cells. With the help of a diagram show the number of arrangements according to
i. Maxwell-Boltzmann.
ii. Bose - Einstein statistics.
10. Calculate the Fermi energy of Lithium at $\mathrm{T}=0 \mathrm{~K}$. Given, the number of conduction electrons per unit volume in Lithium is $2.06 \times 10^{27} \mathrm{~m}^{-3}$. Given $\mathrm{h}=6.625 \times 10^{-34} \mathrm{Js}, \mathrm{me}=$ $9.1 \times 10^{-31} \mathrm{~kg}$.
11. Calculate the maximum velocity of photoelectrons, when ultraviolet radiation of 260 nm is incident on a metal whose threshold wavelength is 380 nm . Given $h=6.625 \times 10^{-34} \mathrm{Js}$, $m_{c}=9.1 \times 10^{-31} \mathrm{~kg}, c=3 \times 10^{8} \mathrm{~ms}^{-1}$.
12. An electron has a de-Broglie wavelength of $1 \AA$. Calculate the group velocity and phase velocity. Given $h=6.625 \times 10^{-34} \mathrm{Js} m_{e}=9.1 \times 10^{-31} \mathrm{~kg}$.
13. In Davisson Germer experiment, electrons accelerated through a potential difference of 54 V showed a maximum reflection at 50° (first order). Calculate the wavelength of the electrons. Given $\mathrm{d}=2.15 \AA$.
14. Calculate the pressure gradient force per unit mass between two isobars of pressure 103.9 kPa and 100.3 kPa which are separated by 79 km from each other. Given density of air $=1.2 \mathrm{kgm}^{-3}$.
15. A mass weighing 0.9 kg is thrown from a point $30^{\circ} \mathrm{N}$ towards north (in the northern hemisphere) with a velocity of $0.6 \mathrm{kms}^{-1}$. Find the magnitude and direction of the Coriolis force acting on the mass. Given, $\omega=7.27 \times 10^{-5} \mathrm{rad}-\mathrm{s}^{-1}$.
16. Calculate the total mass of the earth's atmosphére. Given the pressure at sea level is equal to $1.013 \times 10^{5} \mathrm{~Pa}$, Radius of the earth $=6400 \mathrm{~km}$ and $\mathrm{g}=9.8 \mathrm{~ms}^{-2}$.

> PART - C

Answer any five questions. Each question carries two marks.
17. a. Why do bosons and Fermions have different distribution function?
b. He^{4} shows Bose - Einstein condensation, while He^{3} does not. Explain.
c. Can we use M-B statistics to explain the properties of photon gas? Explain.
d. Are de-Broglie waves observed in case of macroscopic objects? Explain.
e. Is water vapor a green house gas? Explain.
f. Can optical microscope be used to observe nano - particles? Explain.
g. Graphene is the strongest material. Justify.
h. The properties of materials are different at nano level. Why?

